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Abstract

Geometric group theory studies groups from a geometric perspective. Given a finitely generated
infinite group (such as Z", free groups, surface groups, etc.), one constructs a metric space on which the
group acts "nicely", and from the properties of this space one extracts properties of the group.

In this course, we will introduce some basic notions of geometric group theory and discuss a number
of important examples of finitely presented groups. By the end of the course, students should be able to
visualize these groups as geometric objects and recognize them through their geometric properties.

We will assume only basic knowledge of group theory (quotients, isomorphism theorems, ...) and
of topology on metric spaces (connectedness, compactness, quotient spaces, ...). Some familiarity with
algebraic topology would be helpful but is not required.

There will not be proofs for Propositions and Corollaries in this lecture note. They are also exer-
cises! For each section, one Theorem will be attributed as homework.



We will roughly cover the textbook [Loh] Geometric Group Theory: An Introduction by Clara Loh,
Chapters 1 to 7. Below are some useful references:

* Undergraduate

— [Clay-Margalit] Office Hours with a Geometric Group Theorists
— [Armstrong] Groups and Symmetry

¢ Algebraic Topology

— [Massey] A Basic Course in Algebraic Topology
— [Hatcher] Algebraic Topology

¢ Graduate

— [Bridson—-Haefliger] Metric Spaces of Non-Positive Curvature

— [Drutu—Kapovich] Geometric Group Theory

— [de la Harpe] Topics in Geometric Group Theory

— [Lyndon-Schupp] Combinatorial Group Theory

— [Serre] Trees

— [Or’shanskii] Geometry of Defining Relations in Groups

— [ed. Ghys—Haefliger—Verjovsky] Group Theory from a Geometrical Viewpoint

¢ French

— [Coornaert-Delzant—Papadopoulos] Géométrie et Théorie des Groupes: Les Groupes Hyper-
boliques de Gromov

— [Ghys—de la Harpe] Sur les Groupes Hyperboliques d’apres Mikhael Gromov
¢ Gromov

— [Gromov 1987] Hyperbolic Groups, in Essays in Group Theory
— [Gromov 1993] Asymptotic Invariants of Infinite Groups
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1 Basics

1.1 Action!
1.1.1 Group actions on sets

A group action can be thought of as the "motion" of a space by a group.

( R

Definition 1.1. An action of a group G on a set X, denoted by G ~ X, is a function
a:Gx X =X
where a(g, x) is written as g - x or gx, such that for all g,h € G and all x € X,
e lg -z =2,

¢ g (h2) = (gh)

\ J

Equivalently, an action is a group homomorphism p: G — Sym(X) where Sym(X) denotes the
group of bijections of X, called the symmetric group of X; and p(g)(z) =g - x.

Remark. What we have defined is a left action. We can also define a right action, denoted by X G,
as a function a: X x G — X satisfying - 1¢ = z and (z - g) - h = x - (gh). A right action is then
equivalent to an anti-homomorphism p: G — Sym(X). Thatis, p(gh) = p(h) o p(g).

Example. Some examples of group actions.
e Sym(X) ~ X.

* Sym(X) ~ P(X) where P(X) is the set of all subsets of X.

G ~ G by left multiplication, G\~ G by right multiplication.
o Aut(G) ~ G.
e 7Z ~ R by translation, Z" ~ R" by translation.
* Homeo(R) ~ R.
* Z~S'={z€C||z| =1} by rotation: n - z = "> where § € R.
* GL,(R) ~ R™ by matrix multiplication.
1.1.2  Orbits, stabilizers, fixed points

r )

Definition 1.2. Given an action G ~ X.

* The orbit of x € X by G is the set

Orbg(z) =G -z:={g-z| g€ G} CX.

* The stabilizer of x € X by G is the set

Stabg(z) :=={g € G| gr =z} C G.

\ J

Proposition 1.3. Stabilizers are subgroups.



Exercise. Show that Stab(gz) = g Stab(z)g~".
Exercise. Find orbits and stabilizers of Sym(X) ~ P(X).

r )

Definition 1.4. Given G ~ X.

* The set of fixed points of g € G is the set

Fix(9) ={z € X | gz =2z} C X.

* A global fixed point is an element © € X fixed by all g € G. The set of global fixed points
is then
ﬂ Fix(g)={x € X |Vg € G,gx =z} C X.
geG

. J

Exercise. Find fixed points and global fixed points of Sym(X) ~ P(X).

r )

Theorem 1.5. Let G ~ X and x € X. Denote by G/ Stab(x) the set of left cosets of Stab(z)
in G. Then the map

G/ Stab(z) — Orb(x)
g Stab(x) — gz

is well-defined and bijective.

\ J

Proof. There are three things to be checked in exercises of this kind: well-definedness, injectivity, and
surjectivity. In many cases one also needs to check that the map is a homomorphism of some structure,
but this is not the case here.

» Well-defined. Suppose g Stab(x) = ¢’ Stab(x). Then g !¢’ € Stab(x), hence (9 '¢')r = =.
Multiplying by g on the left gives g’z = gx. Therefore, the image of a coset does not depend on
the chosen representative.

* Surjectivity. Let y € Orb(x). By definition of the orbit, there exists ¢ € G such that y = gz.
Thus y is the image of the coset g Stab(z).

* Injectivity. Suppose that g Stab(z) and ¢’ Stab(x) have the same image, i.e. gr = ¢’x. Then
g tg'x = 2,50 g7 g’ € Stab(z), which implies g Stab(z) = ¢’ Stab(x).

O

Corollary 1.6 (Orbit-Stabilizer). If G is a finite group, then for any x € X,

|G| = | Stab(z)|| Orb(z)].

Exercise (Cauchy’s Theorem). Let G be a finite group and let p be a prime dividing |G/|. Let
X ={(91,---,9p) €EG" [ g192---gp = €}.
Define an action of Z/pZ on X by
k- (gla---vgp) = (gk+17"'7gk)'

» Show that every orbit of this action has size either 1 or p.
* Let F' C X be the set of global fixed points (i.e. of orbit size 1). Show that p divide |F.

o Justify that |F| = |[{g € G | g = e}|. Conclude that there exists g € G, g # e, such that g = e.



1.1.3 Free, transitive, faithful

Definition 1.7. An action G ~ X is said to be

o free if gx # x forany g € Gandx € X;
* transitive if for any x,y € X there exists g € G such that gx = y;

e faithful if for any g € G there exists x € X such that gx # .

\ J

Exercise. Determine if Sym(X) ~ P(X) is free, transitive, or faithful.
Proposition 1.8. Every free action is a faithful action.
Proposition 1.9. If G ~ X freely and transitively, then there is a natural bijection from G to X.

Proposition 1.10. An action G ~ X is faithful if and only if the corresponding homomorphism p: G —
Sym(X) is a monomorphism. In any case, the action G/ ker(p) ~ X defined by gker(p) -x := g -z is
well defined and faithful.

Proposition 1.11. Let G ~ X be an action.
* The action is free if and only if for every g € G\{1¢}, Fix(9) = @.

o The action is transitive if and only if there exists x € X such that Orb(x) = X, if and only if for
allz € X, Orb(z) = X.

* The action is faithful if and only if ()¢ x Stab(z) = {1¢}.

Theorem 1.12. /. Every transitive action G ~ X is "equivalent” to an action G ~ G/H by left
multiplication where H is a subgroup and G/ H is the set of left cosets.
2. G~ G/H and G ~ G/K are "equivalent" if and only if H and K are conjugate in G.

Proof. Homework. O

Example (Dihedral group).

The dihedral group D,, is the set of isometries of an n-gon, acting naturally on the n-gon. It consists
of m rotations (including the identity) and n reflections. It’s the subgroup of Homeo(S') generated by
ri et iy 0+ and s: et 1y e,

We can also define co-gon as the real line R where the points on Z are marked; and the infinite
dihedral group D, as the set of isometries of R that preserves Z. It’s the subgroup of Homeo(R)
generated by r: x +— z 4+ land s: z — —zx.

Note that in either case, srs = r~1.

Exercise. Let n € {3,4,...} U {oo}. Consider the action of D,, on an n-gon, which consists of n

vertices and n edges. Show that:
* D, acts transitively on the set of vertices, but not freely.

e D, acts freely on the set of pairs of vertices if n is odd and not freely if n is even, but never
transitively.

* D, acts transitively on the set of edge, but not free.

* D, acts freely and transitively on the set of oriented edges.



1.2 Metric
1.2.1 Metric spaces

( R

Definition 1.13. A metric space (X, d) is a set X together with a distance function
d: X xX =R

such that forall x,y, z € X,

Positive definite:  d(xz,y) > 0 and d(z,y) = 0 ifand only if x = y.
Symmetry: d(z,y) = d(y, x).
Triangle inequality: d(x,z) < d(x,y) + d(y, 2).

Given x € X and 7 > 0, the open ball of radius 7 about x is the set
B(z,r) :={y e X |d(z,y) <r},

and the closed ball

B(z,r) :={y € X | d(z,y) <r}.

Associated to the metric d one has the topology whose basis is the set of open balls B(x,r). Note
that in this topology, B(z, ) may be strictly larger than the closure of B(x,r). The metric space is said
to be proper if every closed ball B(x, ) is compact.

Given a metric space (X, d), asubset Y C X is naturally a metric space (Y, djy xy)-

Example. The set R” with the usual Euclidean metric

Example. Any set X together with the discrete metric

d(z,y) 0 ifx=y,
x?- = .
Y 1 ifx#y.

Compare B(z,1) and B(z, 1).
Example. Let (?(R) denote the space of square—summable real sequences

oo
in<oo},

n=1

€2(R) = {IL' = (xn)nZl

with the metric

Z(xn - yn)2-

n=1

d(l’,y) -

Then (¢2(R), d) is not proper: the closed unit ball B(0, 1) is not compact, since the sequence (e,,),>1
where e,, = (0,...,0,1,0,...) has no convergent subsequence.



1.2.2 Isometries and isometric actions

We now introduce the notion of isometries, that is, maps which preserve the metric structure of a space.
This will allow us to define and study isometric actions on metric spaces.

r )

Definition 1.14. Let f : X — X' be a function from one metric space (X, d) to another (X', d).

o We say that f is an isometric embedding if
d(f(x), f(y) =d(z,y) forallz,y € X.

e In addition, if there exists another isometric embedding g : X' — X such that
gof=1Idxyand fog=Idyx,
then we say that f is an isometry.
* The two metric spaces (X, d) and (X', d') are said to be isometric.

o The set of isometries if a metric space (X, d) is denoted by Isom(X).

. J

Proposition 1.15. * An isometric embedding is injective and continuous.
* A surjective isometric embedding is an isometry.
* Isom(X) is a subgroup of Homeo(X), the set of homeomorphisms of X.
Example. Let m < n be integers. Then the canonical inclusion R™ < R"™ is an isometric embedding.

Example. The map f : R? — R? defined by f(z,y) = (y, z) is an isometry.

Definition 1.16. An isometric action of a group G on a metric space (X, d) is a group homomor-
phism p : G — Isom(X)..

We say that G acts on X by isometries or isometrically.

Exercise. Let G ~ (X, d) by isometries. Show that gB(xz,r) = B(gz,r) forany g € G, z € X, and
7> 0.

a )

Definition 1.17. Let G ~ (X, d) by isometry. The action is said to be

s proper if for any © € X and anyr > 0, the set {g € G | gB(z,7) N B(z,r) # @} C G is
finite.

* cobounded if there exists © € X and r > 0 such that G - B(x,r) = X.

* cocompact if there exists a compact set K such that G - K = X.

\ J

Example. Z"™ ~ R" by translations is proper and cocompact.

Exercise. Find a free action that is not proper, and a proper action that is not free.
Exercise. Show that a transitive action is cocompact, and a cocompact action is cobounded.

Exercise. Show that if the metric space is proper, then a cobounded action is cocompact.



1.2.3 Geodesic metric spaces

Definition 1.18 (Geodesic metric space). Let (X, d) be a metric space. The set of real numbers
R is endowed with the usual metric dg(a,b) = |a — b|.

* A geodesic of X is a map vy from an interval I C R to X which is an isometric embedding.
That is, d(v(a), (b)) = |a — b| for every a,b € I.
If I = [a,b] is finite, we say that the points y(a),y(b) € X are joined by the geodesic 7.

e Let L > 0. An L-local geodesic of X is a map y from an interval I C R to X such that for
every sub-interval J C I of length at most L, the restriction v is a geodesic.

* The space X is called a geodesic metric space if every pair of points can be joined by a
geodesic.

. J

Example. A great circle on a sphere is a local geodesic but not a geodesic.

Example. R™ with the Euclidean metric is a geodesic metric space, R™\{0} is not.

1.3 Graphs and Cayley graphs
1.3.1 Graphs

For the moment we consider graphs as 1-dimensional simplicial complexes, not oriented, without loops
or multiple edges. For graphs as combinatorial 1-dimensional cell complexes, see [Lyondon Schupp] or
[Hatcher]. For graphs in the sense of Serre, see [Serre].

Definition 1.19. A graph is a pair T = (V, E) of disjoint sets where E is a set of subsets of V
that contain exactly two elements. That is,

Ec{e|lecCV,l|e =2}

A graph is finite if V and I are both finite. The degree (or valence) of a vertex v € V, denoted by
deg(v), is the number of its appearance in the edges. A graph is locally finite if every vertex has finite
degree.

Exercise. For a finite graph,

> deg(v) = 2|E].

veV
Some vocabularies:
* A path of length n is a sequence of vertices vg, v1, . . . , Uy, such that {v;, v;+1} € E.
* A cycle of length n is a path vy, vy, . .., vy—1 such that {v,_1,v9} € E.

* A simple path (resp. cycle) is a path (resp. cycle) whose vertices are different.

* A graph is connected if every pair of vertices can be connected by a path.

* A tree is a connected graph with no cycles.

* A graph is d-regular for some integer d > 1 if every vertex has degree d.
Example. Some examples of graphs.

* A cycle of length n.



